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Abstract: One of the important properties of boundary layer is, from the point
of view of Strömungslehre, that it pumps vorticity into the flow field.
Vorticity in fluid flows plays diverse roles and produces tremendous
variety of flow phenomena. We consider four aspects of vorticity
in fluid flows: (A) Kinematical aspect of a vortex sheet, (B) me-
chanical aspect of hydrodynamic impulse of a vortex system, (C)
dynamical aspect: vorticity dynamics, excitation of acoustic waves
and formation of dissipative structure in turbulence, and (D) gauge
field associated with local rotational symmetry.
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1. INTRODUCTION

Boundary layer is a transition layer of velocity adjacent to a solid surface, and
it is the place where vorticity is created. Boundary layer can be separated
from the wall. Separated layer with vorticity is a common source of the
vorticity in flow fields. All these essential properties of the boundary layer
were established in the celebrated paper [1] of Prandtl in 1904.
Given a velocity field v(x), the vorticity ω is defined by ω = rotv, which

is a measure of local rotation of a fluid element. From the point of view of
Strömungslehre, one of the important characteristics of the boundary layer
is that it pumps vorticity into the flow field. Prandtl explained in the same
paper [1] that the boundary layer is prone to be separated from the solid
wall when pressure increases along the direction of flow, and showed some
experimental evidence in the case of flows around a circular cylinder. Along
a cylinder in a free stream, the pressure increases over the rear part of the
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cylinder surface. The fluid decelerated by the viscosity in the boundary layer
is forced to separate from the wall by the adverse pressure gradient under
combined action of the forward free stream.
By the separation, the vorticity ω in the boundary layer is transported to

the interior field ([2]: II §6 and III §6). Separation of boundary layer is most
common source of vortices in fluid flows of uniform density at a high Reynolds
number (under a conseravtive force), where there is no interior mechanism of
creation of vortices. In §4.1, we will consider some mechanisms of creation of
vorticity. The separation occurs most effectively at a sharp edge of a body.
Fluid flows with non-vanishing vorticity are called rotational flows. There

are an infinite variety of rotational flows. In fact, given a simply connected
bounded domain of flows together with boundary conditions for the velocity,
an irrotational flow is determined uniquely. However, rotational flow is not
unique, and one can conceive all sorts of complex flows, depending on the
vorticity distribution under the same boundary conditions.
In this review article, we are going to consider various roles of vorticity

in fluid flows. (A) Kinematical aspect: a vortex sheet, i.e. a thin vorticity
layer sandwiched between two irrotational flows, is a transition layer of dis-
continuity in velocity. This is described as a review of Prandtl’s work in §2.
(B) Mechanical aspect: A system of vorticity (i.e. a certain distribution of
vorticity) possesses a certain amount of momentum (and also some energy).
Therefore, a body shedding a set of vortices from its surface is subject to a
reaction force, which is described in §3. (C) Dynamical aspect: (i) Creation
of vorticity is considered on the basis of the evolution equation of vorticity,
(ii) nonlinear interaction between ω and v excites density waves, resulting
in generation of acoustic waves, and (iii) the vorticity is an agent forming
dissipative structures in turbulence which are visualized as fine-scale slender
objects characterized with high level of vorticity magnitude. (D) Gauge field:
Vorticity is regarded as a gauge field, which is defined in the variational for-
mulation by requiring that the equation of motion should be invariant with
respect to local rotational gauge transformation.

2. KINEMATICAL ASPECT (A review of Prandtl’s work)

There are two different ways nominally, in which vortices are brought to
interior of flows of a fluid of small viscosity. First, when a fluid flows round
a bluff body such as a circular cylinder, the boundary layer separates at a
certain point on the body surface and penetrates into the interior of fluid.
Secondly, when the fluid flows around a sharp edge, the streams along the two
sidewalls of the edge separate at the edge. This forms a surface of separation,
which is a discontinuity surface between two velocities v1 and v2 on the two
sides. On account of viscosity, this separation is regarded as merging of two
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boundary layers on both sides of the edge, and the velocity profile within the
layer takes a form of a function tanh expressing transition from one velocity
v1 to another v2. This layer is obviously rotational, i.e. it has nonzero
vorticity. In the limit of vanishing viscosity, this layer tends to a surface,
called a vortex sheet. Thus, the thin vorticity layer (sandwiched between two
irrotational flows) represents a transition layer of velocity discontinuity.
Two conditions must always be satisfied on the surface of discontinuity.

First, this surface must be a material surface consisting of the same fluid
particle. Secondly, the pressure must be continuous across the vortex sheet.
Separation at a sharp edge can be interpreted as the same mechanism that
is working over the surface of a circular cylinder. For, a sharp edge can be
regarded as a limiting surface when one of the radii of curvature of the wall
surface becomes very small ([3]: §4.8). The flow along the edge will encounter
a sudden increase of pressure after passing by the edge.
The vortex sheet (the pressure being continuous across it) is unstable

and tends to rollup into a sequence of eddies, called the Kelvin-Helmholtz
instability [6]. This occurs as a result of imbalance of pressure across the
sheet when small wavy perturbations are imposed ([2], II §6; [4], §94).
Starting vortex is another well-known example, which is shed from a sharp

trailing edge of an aerofoil driven impulsively ([4], §93). After a short time, a
vortex is left behind, and the aerofoil aquires a circulation round itself which
is equal and opposite to that of the departed vortex.

3. MECHANICAL ASPECT

Suppose that a vorticity field is given by ω(x, t) at a spatial point x at a
time t. The vorticity field is characterized by a hydrodynamic impulse when
the fluid density ρ is assumed constant. The impulse P is defined by

P = An ρ

∫
x × ω(x, t) dnx, (1)

where An = 1 or 1/2 according as the ω distribution is 2D (n = 2) or 3D
(n = 3), respectively. The impulse P is interpreted by the impulsive force
f(x) δ(t− t0) necessary to generate instantaneously the motion from rest at
t = t0. It can be shown that P =

∫
f(x) dnx [6]. The impulse represents an

effective total momentum, because P satisfies the following equation:

d
dt

P =
∫

F r dnx,

where F r denotes the non-conservative body force, i.e. rotF r �= 0 (viscoisty
has no effect on the rate of change of P in unbounded fluid flows [6]). Hence,
if the applied force has a potential (then F r = 0), the P is invariant.
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Figure 1 is taken from the book [5] (Plate 22, Fig.55). This is a most
impressive photograph, illustrating the impulse of a vortex system. The
vortices are shed by an aerofoil that has been started impulsively from rest
to a steady motion, and stopped suddenly shortly after. During the motion,
the aerofoil gained a lift, i.e. an upward momentum. As a reaction, the
fluid acquired a downward momentum, which is represented by the vortex
pattern called a vortex pair, regarded as an object carrying some amount
of downward momentum. Assuming that the flow field of Fig.1 is composed
of two 2D vortices, and denoting the strength of the right vortex with +Γ
and the left by −Γ and their separation distance with d, the magnitude of
impulse of the two-vortex system is given by P = ρΓd from Eq.(1), which is
directed downward.

Figure 1. A vortex pair shed by an aerofoil [5].

Figure 2 shows a vortex ring generated by a shock wave (a circular arc on
the right) emerging from a nozzle (a vertical dark shade on the left end) of
circular cross-section. The generation mechanism is attributed to the impulse
of the shock wave coming out impulsively to the open space. Denoting the
vortex strength with Γ and its ring radius with r, and assuming axisymmetry,
magnitude of the impulse of a circular vortex ring defined with Eq.(1) is given
by P = πρΓr2, which is directed toward right.
A solid body shedding a set of vorticities from its surface is subject to

a reaction force. If the reaction force is perpendicular to the direction of
motion of the body, it is felt as a lift (or lateral) force. If the reaction is
in the opposing direction of body’s motion, then it is a drag. Drag of a
bluff body can be interpreted partly by this sort of vortex drag [8]. On the
other hand, if the reaction is in the same direction as the body’s motion,
then it is felt as a thrust. Animals are wise enoug to take advantage of the
reaction forces variously.1 A pair of tip vortices leaving a finite wing in steady

1e.g. Taylor GK, Nudds RL & Thomas ALR. ”Flying and swimming animals cruise at
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rectilinear motion can be interpreted in this context ([5]: Chap.VI, C).

Figure 2. A vortex ring generated by
a shock impulse [7]. Figure 3. Shadowgraph of head-on

collision of two vortex rings [15].

4. DYNAMICAL ASPECT

4.1 Creation of vorticity

Euler’s equation of motion for a compressible ideal fluid moving under an
external force F per unit mass is

∂tv +ω × v +∇(12 v2) = −ρ−1 ∇p+ F , (2)

where p is the pressure (the density ρ is not necessarily constant). Taking
rot of (2), we obtain an evolution equation for ω = rotv (see e.g. [6]):

∂tω + rot(ω × v) = ρ−2∇ρ×∇p+ rotF r, (3)

where F r is the non-conservative part of F . If the fluid is barotropic, i.e.
p = p(ρ), then ∇ρ × ∇p = p′(ρ)∇ρ × ∇ρ = 0. In addition if the force is
conservative, F r = 0. Then, the right hand side vanishes and we obtain

∂tω + rot(ω × v) = 0. (4)

Based on this equation, Helmholtz’s three laws of vortex motion are derived
[4, 6]: (i) Persistence of irrotationality, (ii) material line remains a vortex
line, and (iii) strength of an infinitely thin vortex tube is invariant when the
vortex moves.2 Furthermore, the Kelvin’s circulation theorem is also derived

a Strouhal number tuned for high power efficiency”, Nature 425 (16 Oct 2003), 707-711.
2Helmholtz originally assumed div v = 0.
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by using (2) with p = p(ρ) and F = gradΨ (conservative body force with a
potential Ψ). The equation (4) describes essentially that the vorticity ω is
frozen to the fluid flow of velocity v, and that no vorticity is created in the
evolution governed by (4).
Putting it the other way, the right hand side of Eq.(3) states that the

vorticity is created in two ways. The pressure p in general depends on two
thermodynamic variables p = p(ρ, s) (say), where s is the entropy per unit
mass, and ∇ρ×∇p �= 0. Then, the vorticity is created by the first term. This
is called the baroclinic effect. Bjerkness [9] gave a geometrical interpretation
of the creation of circulation by this term [4, §85]. In addition, if the force is
non-conservative (then F r �= 0), the second term also can generate vorticity.
A body moving relative to fluid can be replaced kinematically by a distri-

bution of image vorticity within the body. In steady motion, the distribution
of vorticity is fixed relative to the body and is referred to as bound vortic-
ity. It does not in general satisfy the Helmholtz laws. Vorticity satisfying the
Helmholtz laws is referred to as free vorticity. A typical example of the bound
vortex is the Prandtl’s lifting vortex of strength Γ in a stream of velocity U
and density ρ. The lift L acting on the bound vortex per unit length is given
by L = ρUΓ (Kutta (1902), Joukowsky (1906)) [5, §98; 6 §3.1]. Given the
circulation Γ, the lift is independent of the shape of the body. A lifting vortex
is not a physical reality, but a very useful concept for the theory of lift.

4.2 Exciting acoustic waves

An acoustic wave is generated by a localized rotational flow v (with a
localized vorticity ω). At a low Mach number, the sound source is identified
with a term of the form ρ0 div(ω × v), by Powell [10] and Howe [11], where
ρ0 is the undisturbed fluid density. Thus, the wave equation for the acoustic
pressure p′ is written approximately as

c−2 ∂2
t p

′ −∇2p′ = ρ0 div(ω × v), (5)

in the limit of M(= U/c) → 0, where c is the sound speed and U a rep-
resentative flow velocity. This is obtained in the following way. From the
fundamental conservation equations of mass, momentum and energy for flow
of an ideal fluid of uniform entropy, one can derive [14, Appendix A]

(
c−2 ∂2

t −∇2
)
(h+ 1

2 v2) = div(ω × v), = S(x, t), (6)

where h is the entalpy per unit mass. It is assumed that the source flow v(x, t)
is locallized in space and its representative Mach number M is sufficiently
low. Then, the wave equation (6) can be transformed to an integral form,

h(x, t) + 1
2 v2(x, t) = (1/4π)

∫
S(y, tr) d3y.

6



where the wave is observed at x and the source is located at y, and tr =
t − |x − y|/c is the retarded time. Suppose that the observation is made
in such a far field as |x| → ∞ and h + 1

2 v2 → p′/ρ0 since |v| is O(|x|−3)
and h′ = p′/ρ0 + Ts′ = p′/ρ0 (prime denotes acoustic fluctuation). Thus we
obtain an approximate representation,

p′(x, t) = (ρ0/4π)
∫

S(y, tr) d3y. (7)

Thus, it is found that p′(x, t) satisfies approximately the wave equation (5),
when x is far from a compact source at y. If S(y, t) = div(ω×v) is evaluated
with the incompressible vortex motion, then the error would be O(M2).
Based on (5), Möhring [12] succeeded in representing the acoustic pres-

sure p′ in terms of the vorticity ω only, and gave a mathematical basis for
the term, vortex sound. Much earlier, Obermeier [13] found a formula of an
acoustic wave emitted by a spinning pair of two 2D vortices.
An acoustic wave radiated by head-on collision of two vortex rings was

detected experimentally by Kambe and Minota [14], using a pair of vortex
rings generated as in Fig.2. Figure 3 shows a shadowgraph [15] at the time
of head-on collision of two vortex rings whose velocity were much larger than
the acoustic experiment [14]. Two vertical dark columns are the colliding
vortices, and short arcs bridging them (bright-and-dark double layers) are
shocklets. Visible wave patterns are weak shocks.

4.3 Dissipative structure in turbulence

In homogeneous turbulence, average rate of dissipation ε of kinetic energy
〈v2〉/2 per unit mass is proportional to the average squared vorticity 〈ω2〉,

ε = − d
dt

1
2 〈v2〉 = ν 〈ω2〉, (8)

for an incompressible fluid, where ν is the kinematic viscosity, and 〈 · 〉 de-
notes ensemble average.3 This average equation can be derived from (2) by
assuming divv = 0, taking scalar product with v, and replacing F with the
viscous force fv. Taking average over a large volume V, integrating by parts,
and omitting integrated terms over bounding surface, we obtain (8). [16]
In turbulence, there exists a certain straining mechanism by which vortex

lines are stretched on the average. This is related to the negative value of the
skewness S of longitudinal derivative ∂u/∂x [16, §8], where u is the velocity
component along the x-axis, and the skewness S is defined by normalized

3In [1], Prandtl wrote that the viscous force is expressed as fv = ν∇2v = −ν rot! if
divv = 0, hence that the vorticity ! gets involved with the viscous diffusion. But, it is
noted only that fv = 0 for ! = 0, i.e. irrotational flow is possible for arbitrary viscosity.
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statistical average of (∂u/∂x)3. Non-zero value of S implies that the statistics
is non-Gaussian, and that there exists structures in turbulence, which is often
called the intermittency [17]. As a thin vortex tube is stretched, its vorticity
increases, and dissipation is enhanced around it in accordance with (8).
According to the theory of energy cascade of fully developed turbulence,

energy is dissipated at scales of smallest eddies of order η = (ν3/ε)1/4, called
the Kolmogorov’s dissipation scale. In computer simulations, the dissipative
structures in turbulence are visualized as fine-scale slender objects with high
level of vorticity magnitude often called worms.
Figure 4 shows snapshot of vorticity field [18] obtained by a direct numer-

ical simulation of incompressible turbulence in a periodic box with grid points
20483 carried out on the Earth Simulator, the largest parallel computer in
operation.

(a) (b)

Figure 4. High-vorticity isosurfaces obtained by DNS of 20483 grid points with
ν = 4.4 × 10−5, η = 1.05 × 10−3, the Taylor-microscale Reynolds number
Rλ = 732, and the integral scale L = 1.23. (a) Length of a side is 2992 η, and
(b) 8 times enlargement of (a), i.e. length of a side is 374 η, the area being
1/64 of that of (a). The isosurfaces are defined by |ω| = 〈ω〉+ 4σ where σ is
the standard deviation of the magnitude |ω|. [18].

5. GAUGE FIELD

Fluid mechanics is considered as a field theory of mass flow in Newtonian
mechanics. In the theory of gauge fields, a guiding principle is that laws of
physics should be expressed in a form that is independent of any particular
coordinate system. The Lagrangian of fluid flow is defined in such a way
as having an invariance under Galilei transformation. Next, a gauge prin-
ciple is applied to the Lagrangian, requiring it to have symmetry, i.e. the
gauge invariance. In regard to the fluid flows, relevant symmetry groups are

8



translation group and rotation group [19].
According to the gauge principle, time derivative of velocity is given by

the covariant derivative ∇tv in the following form:

∇tv = ∂tv + grad(v2/2) + Ωv, (Ωv)i = Ωijvj (9)

where Ω is a linear operator called a gauge field, assumed to vanish in irro-
tational flows.
For irrotational flows in which v = vp = gradφ (φ: a velocity potential),

first two terms represent a time derivative which is invariant under local
translational gauge transformation, and the expression (9) reduces to

∇tvp = ∂tvp + grad(v2
p/2) = ∂tvp + (vp · ∇)vp. (10)

since 1
2 ∂k(vp)2 = (∂iφ)∂k(∂iφ) = (∂iφ)∂i(∂kφ) = (vp · ∇)(vp)k. There exist

some liquids, in which composing particles are equivalent and indistinguish-
able. Local rotation of such a fluid may not be captured because local rotaion
(if any) should make no difference. Therefore the flow should be inevitably
irrotational. It is known that super-fluid flows such as He4 (a boson) or a
Bose-Einstein condensate are irrotational.
This is not the case when we consider motions of a fluid composed of

distinguishable particles such as an ordinary fluid. Local rotation is distin-
guishable and flows are rotational in general. Then, it is required that the
equation of fluid flows should be invariant under rotational gauge transfor-
mation, and that ∇tv is invariant with respect to Galilei transformation.
From this requirement, we find [20] that the gauge term must be of the form
Ωij = −εijkωk, where ωk is the k-th component of the vorticity ω. Hence,
we obtain

(Ωv)i = −εijkωkvj = (ω × v)i.

Thus, the vorticity ω is found to be the gauge field, and the covariant deriva-
tive (9) is given by the material derivative, i.e. the Lagrange derivative,

∇tv = ∂tv + grad(v2/2) + ω × v = ∂tv + (v · ∇)v, (11)

by using a well-known vector identity.
This gauge-theoretic formulation provides a theoretical ground to the

physical analogy between the aeroacoustic interaction associated with vor-
tices and the interaction of electron and electromagnetic-field. In the latter
problem, the electromagnetic field is the gauge field.
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